根号3tan(pai/6-θ)tan(pai/6 θ) tan(pai/6-θ) tan(pai/6 θ)=?
tan(π/6-θ) =[ tanπ/6-tanθ]/(1 tanπ/6tanθ)
= [1/√3 - tanθ]/(1 tanθ/√3)
= (1-√3tanθ)/(√3 tanθ)
tan(π/6 θ) =(1 √3tanθ)/(√3-tanθ)
√3tan(π/6-θ)tan(π/6 θ) tan(π/6-θ) tan(π/6 θ)
=√3[(1-√3tanθ)/(√3 tanθ)][(1 √3tanθ)/(√3-tanθ)] (1 √3tanθ)/(√3-tanθ) (1-√3tanθ)/(√3 tanθ)
=√3(1-3(tanθ)^2)/(3-(tanθ)^2) [(1 √3tanθ)(√3 tanθ) (1-√3tanθ)(√3-tanθ)]/(3-(tanθ)^2)
=[√3(1-3(tanθ)^2) 2√3 2√3(tanθ)^2 ] /(3-(tanθ)^2)
= √3(3-(tanθ)^2) /(3-(tanθ)^2)
= √3。
0