两数的平方和加上两数的积再乘以两数的差,所得到的积就等于两数的立方差。
用公式表达即:a3-b3=(a-b)(a2+ab+b2)
a3-b3=(a-b)3-(-3a2b+3ab2)
=(a-b)(a-b)2+(3ab*a)-(3ab*b)
=(a-b)(a-b)2+(a-b)(3ab)
=(a-b) [(a-b)2+3ab]
=(a-b) [(a2-2ab+b2)+3ab]
=(a-b)(a2+ab+b2)
证得:
a3-b3=(a-b)(a2+ab+b2)
0